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• High-level of tri-OPEs were found in the
atmosphere of an e-waste dismantling
park.

• TPhP was the dominant tri-OPEs found
in the e-waste dismantling park.

• The concentrations of tri-OPEswere 5–6
orders of magnitude higher than di-
OPEs.

• Tri-OPEs and di-OPEs generated from e-
waste dismantling spread to surround-
ing area.

• The non-carcinogenic risk via inhalation
decreased with age (0–70 years old).
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Recycling e-waste has been recognized as an important emission source of organophosphate triesters
(tri-OPEs) and organophosphate diesters (di-OPEs), but the presence of di-OPEs in atmosphere has not
been studied. Herein, tri-OPEs and di-OPEs in atmosphere of an e-waste dismantling park and surround-
ing area in South China were monitored for three consecutive years. Thirteen tri-OPEs and seven di-OPEs
were identified. In 2017, 2018, and 2019, tri-OPE concentrations in e-waste dismantling park were 1.30
× 108, 4.60 × 106, and 4.01 × 107 pg/m3, while di-OPE concentrations were 1.14 × 103, 1.10 × 103, and
0.35 × 103 pg/m3, respectively, which were much higher than the surrounding area. Tri-OPEs and di-
OPEs generated during e-waste dismantling affected surrounding area through diffusion. Triphenyl
phosphate (TPhP) and diphenyl phosphate (DPhP) were the predominant congeners of tri-OPEs and
di-OPEs, respectively. Additionally, TPhP concentration was extremely higher than other tri-OPEs, so
TPhP could be used as an indicator of e-waste dismantling. Spearman correlation analysis showed signif-
icant correlations between DPhP and TPhP (R2 = 0.53, p < 0.01), bis-(1-chloro-2-propyl) phosphate
(BCIPP) and tris(2-chloropropyl) phosphate (TCIPP) (R2 = 0.49, p < 0.01), as well as dibutyl phosphate
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(DBP) and tributyl phosphate (TBP) (R2 = 0.53, p < 0.01), indicating that they had the same source.
Further, non-carcinogenic risk of them to people via inhalation was acceptable and non-carcinogenic
risk of tri-OPEs decreased year by year in surrounding area.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Organophosphate triesters (tri-OPEs) are widely used as plasticizers
and flame retardants in different products including textiles, furniture,
plastics, and electronic devices (Hou et al., 2016; Stapleton et al.,
2012). Generally, tri-OPEs can be divided into three groups according
to their different substituents, including alkyl phosphate triesters
(Alkyl-tri-OPEs), chlorinated alkyl phosphate triesters (Cl-tri-OPEs),
and aryl phosphate triesters (Aryl-tri-OPEs) (Kim et al., 2017). As
polybrominated diphenyl ethers (PBDEs) are being phased out, tri-
OPEs are becoming one of the most common alternative flame retar-
dants (Hou et al., 2016). In addition, most of them are additives,
which are easily released into the environment during their production
(Ma et al., 2017; Wang et al., 2020a; Wannomai et al., 2021). Thus, the
elevated concentrations of tri-OPEs have been reported recently in at-
mosphere (Ma et al., 2020; Wang et al., 2018), dust (Tan et al., 2019),
sludge (Wang et al., 2019), soil (Ge et al., 2020), sediment (Li et al.,
2019a), biota (Liu et al., 2019) and even in human beings (Zhao et al.,
2016). The concentration of tri-OPEs even exceeds that of traditional
flame retardants (Li et al., 2019a; Wei et al., 2015), raising concerns
about their potential ecological effects and human health risks. Several
reports have suggested that exposure to tri-OPEs is linked with adverse
health issues, such as mutagenic, carcinogenic, and neurotoxic effects
on humans and organisms (Meeker et al., 2013; Veen and Boer, 2012).

Apart from tri-OPEs, organophosphate diesters (di-OPEs) are com-
monly used as industrial products or exist as impurities of tri-OPEs
products (Matsukami et al., 2015), which are released during produc-
tion and usage, similar to tri-OPEs. However, studies of di-OPEs in the
environment are very limited. At present, the works on environmental
di-OPEs are mainly concentrated on di-OPEs present in dust (Du et al.,
2020; Tan et al., 2019) and sludge (Fu et al., 2017; Wang et al., 2019).
The major sources of di-OPEs include degradation of tri-OPEs, impuri-
ties in tri-OPEs formulations, and direct commercial applications (Du
et al., 2020). Recent study also reported that di-OPEs are potentially
toxic and disrupt the endocrine system. For example, dibutyl phosphate
(DBP) can negatively impact the reproductive system of male rats
through oxidative stressmechanisms (Chen et al., 2011). Both triphenyl
phosphate (TPhP) and diphenyl phosphate (DPhP) can impact the car-
diac development of zebrafish (Mitchell et al., 2019).

Primitive e-waste recycling activities have been recognized as an im-
portant source of tri-OPEs and di-OPEs in the environment (Ali et al.,
2017; Du et al., 2020). As the largest e-waste dismantling base, a typical
e-waste dismantling park in southern China has attracted much atten-
tion. In the past decade, informal dismantling has been gradually
prohibited this area. The local government began to establish an e-
waste dismantling park in 2013, which was formally put into use at
the end of 2015 (Wang et al., 2020b). After the establishment of e-
waste dismantling park, different workshops were established and
more environmentally-friendly technologies were introduced (Ge
et al., 2020). In addition, according to our actual survey, disassembly is
more concentrated and detailed, mainly divided into disassembly area,
baking plate area, crushing area and cutting area. Pollutants, released
into the atmosphere by e-waste dismantling activities, may adversely
affect the human health (Chen et al., 2019; Ma et al., 2020). The atmo-
spheric environment also plays an important role in transporting vola-
tile organic compounds (VOCs) (Chen et al., 2021) and semi-volatile
organic compounds (SVOCs) (Chen et al., 2019) to the surrounding
area. For example, pollutants can enter water and soil through dry and
wet deposition, or combine with atmospheric particles to form dust,
2

and also can enter plants through absorption and bioaccumulation (Li
et al., 2019b). Furthermore, inhalation of polluted air is one of the
major routes of tri-OPEs exposure (Ma et al., 2020). The gas-particle
partitioning of tri-OPEs plays an important role in their environmental
behavior, which is mainly related to vapor pressure and octanol/air par-
tition coefficient (KOA) (Salthammer and Schripp, 2015). To the best of
our knowledge, there are very limited reports on the tri-OPEs present
in the atmosphere of e-waste dismantling areas for several years, espe-
cially gas/particle distribution profiles. And there also exists a gap in the
knowledge on the environmental behaviors and fates of di-OPEs in the
atmosphere. Therefore, it is significant to explore the impact of tri-
OPEs and di-OPEs in the atmosphere released from the e-waste disman-
tling activities on the surrounding area.

To obtain a better understanding of the environmental occurrences,
sources, and fates of tri-OPEs and di-OPEs in the atmosphere, as well as
the influence of e-waste recycling on the nearby area, both atmospheric
particulate and gaseous phase samples were collected and the pollution
characteristics of di-OPEs and tri-OPEs were measured within a typical
e-waste dismantling site and its surrounding area in South China. The
aims of this study were to (1) investigate the environmental occur-
rences, geographical distribution, and composition profiles of di-OPEs
and tri-OPEs in the atmosphere within this area; (2) explore gas/parti-
cle distribution profiles and potential sources of tri-OPEs and di-OPEs;
and (3) assess possible human inhalation exposure risk to di-OPEs and
tri-OPEs from e-waste dismantling activities over three consecutive
years.

2. Materials and methods

2.1. Sample collection

Atmospheric samples were collected from a typical e-waste
dismantling park (EP) and its surrounding area (there are 18 sampling
points around the e-waste dismantling park, which are named as “S1–
S18”) in a 9 km×9kmsquare in SouthChina. The geographic information
of sampling sites include EP (22.3275°N, 116.3621°E), S1 (23.3602°N,
116.3582°E), S2 (23.3354°N, 116.3968°E), S3 (23.3600°N, 116.3580°E),
S4 (23.3301°N, 116.4099°E), S5 (23.3293°N, 116.3676°E), S6
(23.2971°N, 116.3491°E), S7 (23.3103°N, 116.3388°E), S8 (23.3458°N,
116.3239°E), S9 (23.3083°N, 116.3659°E), S10 (23.3570°N, 116.3857°E),
S11 (23.3443°N, 116.3677°E), S12 (23.3569°N, 116.3717°E), S13
(23.3457°N, 116.3957°E), S14 (23.3544°N, 116.3882°E), S15 (23.3641°N,
116.3994°E), S16 (23.3249°N, 116.3525°E), S17 (23.3401°N,
116.3528°E) and S18 (23.3091°N, 116.3987°E). During the sampling pe-
riod, the weather was sunny or cloudy (no sampling on rainy days), the
wind direction was mainly northeast, and the sampling volume was re-
corded at 25 °C. The information of meteorological data was obtained
from https://www.gd121.cn/index.shtml. Total suspended particulate
(TSP) samples and corresponding gaseous samples were collected using
medium-volume (0.3 m3/min) air samplers (Guangzhou Mingye Com-
pany) for approximately 8 h (from 9:00 am to 17:00 pm) at approxi-
mately 1.5–2 m above the ground. Quartz fiber filter membrane
(10 × 12.5 cm2, Munktell, Sweden) and polyurethane foam (Restek,
China) were used to collect the particulate and gaseous phase respec-
tively. The detailed information is provided in Supporting Information
(SI), and the details of sampling points are shown in Table S1 and
Fig. S1. Total of 114 samples with 19 pairs (EP and S1–S18) of samples
(TSP samples and gaseous phase samples)were collected each year inOc-
tober from 2017 to 2019. After sampling, samples were wrapped in

https://www.gd121.cn/index.shtml


C. Yue, S. Ma, R. Liu et al. Science of the Total Environment 806 (2022) 151206
aluminum foil and placed in a sealed bag, then stored in a refrigerator
(−20 °C) until final analysis.

2.2. Sample analysis

After spiking with surrogate standards (TCEP-d12, TPhP-d15, and
tributyl phosphate (TBP)-d27), PUF plugs and filters were soxhlet ex-
tracted with solvent mixture (hexane: dichloromethane: acetone =
2:2:1, v/v/v) for 24 h. The extracts were concentrated and purified
using Florisil SPE cartridge (2 g/12 mL), and then a solvent mixture
(10 mL, ethyl acetate: dichloromethane = 1:1, v/v) was used to elute
target compounds. The eluted extract was concentrated under nitrogen
gas and stored in a refrigerator (−20 °C) before analysis.

Tri-OPEs were analyzed by gas chromatography coupled with triple
quadrupole mass spectrometry (GC–MS-TQ8040, Shimadzu, Japan)
using an electron impact ionization. An HP-5MS capillary column
(30 m × 0.25 mm × 0.25 μm) was used for chromatographic separation.
A 1 μL samplewas injected in the splitlessmode, and ion source and inter-
face temperatures were set at 230 °C and 300 °C, respectively. The oven
temperature was programmed as follows: the initial temperature was
set at 60 °C (held for 1 min), then raised to 200 °C at 10 °C/min, to
280 °C at 5 °C/min, to 300 °C at 10 °C/min and finally held for 10 min at
300 °C. The detailed information about column and analysis procedure
is provided in SI, and theMS/MS parameters are summarized in Table S2.

Di-OPEs were analyzed by high performance liquid chromatography
(HPLC, Agilent 1260 Infinity II) coupled with a 6470 triple quadrupole
mass spectrometer (equipped with Agilent 1260 series binary pump
(G7112B) and an autosampler (G7129A)). An HPLCONE-5C8A column
(250mm× 4.6 mm i.d.) was used to separate different di-OPEs. The in-
jection volume for LC/MS-MS analysis was 10 μL. H2O (containing 0.1%
formic acid, v/v) andMeOHwere used asmobile phases A and B, respec-
tively. The gradient started at 35% B and was ramped up to 75% phase B
within 2min, to 95% phase Bwithin 20min, and then held for 5min be-
fore reverting to 35% phase B at a flow rate of 0.400 mL/min. Source
temperature was optimized as 300 °C and nebulizer pressure was set
as 45 psi. Detailed information of HPLC and MS/MS parameters is
given in Table S3. Thirteen tri-OPEs congeners and seven di-OPEs
were analyzed, chemical properties of them were listed in Table S4. It
must be noted that DoCP (di-o-cresyl phosphate) andDpCP (di-p-cresyl
phosphate) cannot be separated successfully on HPLC column, so both
compounds were quantified as a compound of mDCP (DoCP + DpCP)
in this work. Thus, pollution profiles of only seven instead of eight
kinds of di-OPEs were reported in this study.

2.3. Quality assurance and quality control

One matrix blank and one matrix spiked sample were run with
every batch of ten samples. Relative standard deviation was confirmed
to be <10%. Quantitative standard curves of tri-OPEs and di-OPEs
were obtained with seven concentration points each and the regression
coefficient (R2) for the calibration curvewas ≥0.99. The recoveries of di-
OPEs and tri-OPEs were 71–113% and 78–106% in the spikedmatrix, re-
spectively. Themethod detection limits (MDLs) and the limit of quanti-
tation (LOQ) for each compound were calculated as 3 times and 10
times S/N (ratio of signal to noise) of standard, respectively (Table S5).
The concentrations of target analytes in sample were corrected by
subtracting concentration of blank sample of the samebatch, but not ac-
cording to the recovery rate of the substitute. Detailed results can be
found in Table S5.

2.4. Human exposure risk assessments

SVOCs in the atmosphere are not fully absorbed via inhalation expo-
sure. Therefore, assessment of the non-carcinogenic risk via inhalation
exposure to tri-OPEs and di-OPEs should consider inhalation bioaccessi-
bility (Wannomai et al., 2021). The average daily dose (ADD) of di-OPEs
3

and tri-OPEs via inhalation exposure was calculated using Eq. (1). The
hazard index (HI) of di-OPEs and tri-OPEs can be calculated by Eq. (2).

ADD ¼ C � IF � IR� ET=BW ð1Þ

HI ¼ ADD=RfD ð2Þ

In the above equations, C is the concentration of tri-OPEs and di-
OPEs measured in atmosphere (pg/m3); IF is inhalable fraction (%)
(Hu et al., 2019); ET represents outdoor exposure time, the average
time spent in an outdoor environment per person is 6 h per day (Syed
et al., 2020); IR represents inhalation rate (m3/d); and BW represents
average body weight (kg). The values of IR and BW vary with age
(Table S6) (Guida et al., 2021) and the recommended values of oral ref-
erence dose (RfD) are from the USEPA (Table S7) (Ali et al., 2012). HI
value < 1 means no non-carcinogenic risks of these chemicals to
human health.

3. Results and discussion

3.1. Concentrations and composition profiles of tri-OPEs and di-OPEs

The detection frequencies (DFs) and concentrations (gaseous+par-
ticulate phase) of thirteen tri-OPEs and seven di-OPEs from e-waste dis-
mantling park and surrounding area are summarized in Table 1. All
these target chemicals were detected in atmospheric samples from e-
waste dismantling park, while DFs of the samples in surrounding area
were relatively lower. Specifically, DFs of three tri-cresyl phosphates
(p-TCP, m-TCP, and o-TCP) ranged from 44.5 to 94.5%, and DFs of
other di-OPEs except bis-(1-chloro-2-propyl) phosphate (BCIPP),
DPhP, and DBP ranged from 72.2 to 100%.

Total concentrations of tri-OPEs (∑tri-OPEs) in atmospheric sam-
ples from e-waste dismantling park in 2017, 2018, and 2019 were
1.30 × 108, 4.60 × 106, and 4.01 × 107 pg/m3, respectively, which
were 1757, 194, and 10,897 times higher than the corresponding me-
dian concentrations of the surrounding area. Similar to tri-OPEs, ∑di-
OPEs in e-waste dismantling park were 1.14 × 103, 1.10 × 103, and
0.35 × 103 pg/m3, respectively, which were also higher than the corre-
sponding values of surrounding areas (ranging from 1.36 to 141 pg/
m3). From the perspective of time variation, the concentrations of tri-
OPEs in atmosphere in e-waste dismantling park were the highest in
2017, decreased dramatically in 2018, and then increased again in
2019 (the concentration in 2019was lower than that in 2017, but higher
than that in 2018). In contrast, the concentrations of di-OPEs in 2017
and 2018 were similar, but decreased in 2019. Therefore, it can be con-
cluded that the concentration of tri-OPEs in the e-waste dismantling
park was undulant, while the concentration of di-OPEs decreased year
by year. This is because the concentrations of di-OPEs and tri-OPEs in
the e-waste dismantling park mainly depend on the dismantling activ-
ity intensity on sampling day. The concentrations of both di-OPEs and
tri-OPEs in surrounding area decreased year by year, demonstrating
that the pollution of them in surrounding area was improved after
strengthening the management. The above results indicated that prim-
itive e-waste recycling activity might be an important source for the
emissions of tri-OPEs and di-OPEs into the surrounding atmospheric en-
vironment. However, there are some limitations of thesefindings due to
the limitation of sample size and time.

Since distinct congeners of tri-OPEs were targeted in previous re-
ports, the direct comparison of the concentrations of ∑tri-OPEs
among these reports might be misleading. Nevertheless, ∑tri-OPEs
found in e-waste dismantling park of this research was the highest
(4.60 × 106–1.30 × 108 pg/m3) ever reported in atmospheric particles,
which was substantially higher than that found around an airport in
New York state, United States (ranging from 1.32 × 103 to
2.07 × 104 pg/m3) (Li et al., 2019b) and four sites in the Houstonmetro-
politan area in TSP samples (ranging from 3.20 × 102 to 3.50 × 103 pg/
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m3) (Clark et al., 2017). Besides, relatively higher concentrations of
∑tri-OPEs were detected in air particulate matter in offices of Hang-
zhou, China (5.0 × 103–1.48 × 106 pg/m3) (Yang et al., 2014), which
may be related to tri-OPEs are widely used in household products and
electronic appliances. The variation of tri-OPEs levels between different
reports may be related to specific sources, and needs more studies to
clarify.

For individual congeners, TPhP concentration was the highest in the
e-waste dismantling park, followed by Cl-tri-OPEs, such as TCPP and tris
(2-chloropropyl) phosphate (TCIPP). These two compounds accounted
for 73–99% of ∑tri-OPEs, and concentration of alkyl-tri-OPEs was the
lowest. This may be related to the fact that TPhP is widely used as
flame retardants, plasticizer additives, and polyvinyl chloride in elec-
tronic and industrial products (Lu et al., 2017; Wang et al., 2020a,
2020b), and Cl-tri-OPEs are persistent in the environment and has a
wide application in electronic products (Li et al., 2019a, 2019b; Liu
et al., 2016). This result was consistent with surface soil samples col-
lected in the same area, where TPhP had the highest content followed
by Cl-tri-OPEs (Ge et al., 2020). TPhPwas also found to be themajor or-
ganic constituent of particulate matters released during printed circuit
board recycling process, suggesting that it may act as a marker for e-
waste dismantling (Bi et al., 2010). In addition, TPhP content was the
highest in an e-waste region, but TCIPP was the most dominant com-
pound in urban region (Wang et al., 2018). TPhP concentration was sig-
nificantly higher compared to other tri-OPEs in e-waste area. Therefore,
TPhP could be used as an indicator of the e-waste dismantling process.

Among the detected di-OPEs, DPhP was the most predominant con-
gener, accounting for 62%, 77%, and53%of∑di-OPEs in the e-waste dis-
mantling park in 2017, 2018, and 2019, respectively. BCIPP was the
second-highest contributing congener, accounting for 33%, 17%, and
43% of ∑di-OPEs in 2017, 2018, and 2019, respectively. Relatively
higher contributions of DPhP and BCIPP were also found in the sur-
rounding area, indicating that these congeners of di-OPEs might diffuse
from the e-waste dismantling park. However, DBP contributed only 1%
in e-waste dismantling park while it was as high as 21% in surrounding
area. One possible reason was that besides e-waste dismantling, other
sources also contributed DBP. For instance, DBP is widely used in com-
mercial products and in metal extraction (Quintana et al., 2006). TBP,
Fig. 1.Gas-particle partitioning of tri-OPEs ((a) alkyl-tri-OPEs; (b) Cl-tri-OPEs; (c) aryl-tri-OPEs
from the e-waste dismantling park and the surrounding area.
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the parent compound of DBP, is predominantly used as plasticizer in lu-
bricants and plastic (Veen and Boer, 2012). The emission of TBP from
private plastic recycling workshops also makes a large contribution
(Ge et al., 2020), as TBP may be degraded to DBP during the plastic
recycing processs. On the other hand, it might be attributed to the
half-life times of different compounds in atmosphere were different
(Wu et al., 2020). Nevertheless, the predominance of DPhP (accounting
for ≥60% of ∑di-OPEs) found in air particles within the e-waste dis-
mantling park further indicated that DPhP was derived from e-waste
dismantling activities.

3.2. Gas-particle partitioning of tri-OPEs and di-OPEs

Gas-particle partitioning results of tri-OPEs and di-OPEs in atmo-
sphere from surrounding area and the e-waste dismantling park are il-
lustrated in Figs. 1 and S2. Tri-OPEs were mainly distributed in
particulate phase, accounting from 70% to 100% at different sampling
sites. Specifically, aryl-tri-OPEs were mainly deposited in particulate
phase, with a contribution of 70–100%. For Cl-tri-OPEs, the contribu-
tions of gaseous-phase accounted for <21%, except at site S11 (account-
ing for 40%). The sampling site S11 is close to a densely populated living
area, and other unknown sources may exist since Cl-tri-OPEs are fre-
quently used in paint, lacquer, glue, and industrial processes (Wei
et al., 2015). Cl-tri-OPEs were also found to be themost dominant com-
pounds in office air particulate matter in Hangzhou, China (Yang et al.,
2014). Therefore, further research is needed to clarify. However, for
alkyl-tri-OPEs, the gas-particle partitioning varied significantly at differ-
ent sampling sites, which might be related to the direct emissions of
alkyl-tri-OPEs from other non-e-waste sources. As previously reported,
alkyl-tri-OPEs are also used as hydraulic fluid and lubricant additives
(Shi et al., 2020), which can be easily released in gaseous form. In addi-
tion, aryl-tri-OPEs and Cl-tri-OPEs were exclusively detected in particu-
late phase (>99%) for air sampled frome-waste dismantling park, while
more tri-OPEs componentswere volatized into the gaseous phase in the
surrounding area. This might be ascribed to lower vapor pressure and
higher octanol/air partition coefficient (KOA) values (Wang et al.,
2019) of aryl-tri-OPEs and Cl-tri-OPEs compared to alkyl-tri-OPEs,
which tend to bind to particulate matter. For aryl- and Cl-tri-OPEs, the
) and di-OPEs ((d) alkyl-di-OPEs; (e) Cl-di-OPEs; (f) aryl-di-OPEs) in atmospheric samples
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gaseous phase contributions in the surrounding area were also dramat-
ically higher than those in e-waste dismantling park. As the major tri-
OPEs components emitted from e-waste dismantling park, diffusion ve-
locity of particle-bonded aryl- and Cl-tri-OPEs was not as fast as that of
the gaseous phase. The proportion of gaseous-phasemight be increased
during diffusion and transmission of pollutants.

As reported, tri-OPEs were also exclusively found in the particulate
phase in an indoor environment (Carlsson et al., 1997) and e-waste
recycling plant (Sjödin et al., 2001), with a contribution ≥ 99% of the
total tri-OPEs,whichwas consistentwith the results for the e-waste dis-
mantling park in this study. The gas-particle partitioning could differ
widely because of the uncertainty in predicted saturation vapor pres-
sure (PS) (of the subcooled liquid) (An et al., 2011) and KOA

(Salthammer and Schripp, 2015). Flame retardants, which typically
possess low Ps and high KOA, prefer binding with particles (Veen and
Boer, 2012). However, the gas-particle partitioning of individual com-
pounds of tri-OPEs differed widely, rather than absorbed onto atmo-
spheric particles due to their different values of KOA (Wolschke et al.,
2016).

To simulate gas-particle partitioning, Pankow defined partitioning
constant (Kp) as Kp = F/A/TSP, where F (ng/m3) and A (ng/m3) are
particulate-associated and gas-associated levels, respectively; and TSP
is the level of TSP (μg/m3) (Pankow, 1988). Moreover, the relationship
between Kp and subcooled steam pressure (pL0) was also proposed as:
log Kp = mr log pL

0 + bm. For a balanced distribution, mr is close to −1
(Pankow and Bidleman, 1992). To explore the gas-particle partitioning
equilibrium of tri-OPEs, the relationship between log KP and log pL

0 of
tri-OPEs was analyzed at three atmospheric sampling points: e-waste
dismantling park, upwind area, and downwind area. As Fig. S3 show,
the gas-particle partitioning in the upwind direction was closer to the
equilibrium state, followed by the downwind direction, while the gas-
particle partitioning in the e-waste dismantling park was the most un-
balanced (the values of mr for e-waste dismantling park, upwind area,
and downwind area were −0.2889, −0.92194, and −0.44678, respec-
tively). The possible reason was that there was a constant input of tri-
OPEs in the e-waste dismantling area, and the downwind area was in-
fluenced by e-waste dismantling. Therefore, the gas-particle
partitioning in e-waste dismantling area and the downwind area did
not reach the equilibrium state, while the upwind point was not influ-
enced by e-waste recycling and was close to the equilibrium state.
This information further demonstrated that e-waste dismantling is a
key source of tri-OPEs.

For di-OPEs, gas-particle partitioning of Cl-di-OPEs and aryl-di-OPEs
showed similar trends as for tri-OPEs (Fig. 1). Both congeners were also
exclusively found in particulate phase in e-waste dismantling park, but
their proportions in gaseous phase in the surrounding area increased
due to the diffusion and transport of these pollutants (Fig. S2). Their for-
mationmechanismmight be similar to that of tri-OPEs discussed above.
Specifically, DPhPwasmore likely to evaporate into gaseous phase than
BCIPP and other di-OPEs (Fig. S4). The reason for higher concentration
of DPhP in the gaseous phase remains unknown. Theoretically, DPhP
has a higher KOA than BCIPP (Tan et al., 2019), whichwould favor its de-
position in particulate phase. Since DPhP was the most dominant com-
pound of di-OPEs, gas-particle partitioning of di-OPEs could also be
determined by DPhP distribution. Besides, compared with alkyl-tri-
OPEs, alkyl-di-OPEs were more likely to distribute in particulate phase,
and variations in their gas-particulate distribution amongdifferent sam-
pling sites inside and outside the e-waste dismantling park were
smaller. These results indicated that other non-e-waste sources might
determine the gas-particle partitioning of alkyl-di-OPEs, and more fu-
ture research is required to clarify this issue.

3.3. Source appointment of tri-OPEs and di-OPEs

To reveal potential sources of di-OPEs, correlations of di-OPEs and
their parent tri-OPEs were analyzed. Significant linear correlations
6

were found between TPhP and DPhP (R2 = 0.53, p < 0.01), TCIPP and
BCIPP (R2 = 0.49, p < 0.01), as well as TBP and DBP (R2 = 0.53,
p < 0.01) (Fig. 2), indicating that DPhP, BCIPP and DBP in the atmo-
sphere might come from the degradation of their parent tri-OPEs or
share a similar source. As is known, the oligomeric organophosphorus
flame retardants (o-PFRs) of resorcinol bis(diphenylphosphate)
(RBDPP) and bisphenol A bis(diphenylphosphate) (BPA-BDPP) include
both TPhP and DPhP. Commercial diethylene glycol bis[di(2-
chloroisopropyl) phosphate] (DEG-BDCIPP) includes TCIPP and BCIPP
(Matsukami et al., 2015). However, no significant correlation between
TCEP and BCEP (R2 = 0.096, P = 0.10) was observed, indicating that
they might have different sources or environmental behaviors. As re-
ported, TCEP has a longer half-life time in atmosphere than TCIPP and
thus might not easily be degraded, although these two chemicals are
structurally similar (Wang et al., 2019). Therefore, TCEP does not readily
convert to BCEP in air, as well as in urine (He et al., 2018). Researchers
also suggested that the relative importance of the different sources im-
pacted the variation of different di-OPEs (Tan et al., 2019).

To further understand the sources of di-OPEs and tri-OPEs, principal
component analysis (PCA) was performed (Fig. S5) and the rotated
componentmatrix for loads of di-OPEs and tri-OPEs in principal compo-
nent are shown in Table S8. Two principal components were responsi-
ble for 76.9% of the total variance for all samples, which can basically
explain the data. The first principal component (PC1) was responsible
for 68.6% of the total variance, which was predominantly weighted by
most of the di-OPEs and tri-OPEs. It has been reported that Cl-tri-OPEs
are used as alternatives for penta-BDE (Stapleton et al., 2012) and
nonchlorinated tri-OPEs are employed as plasticizer additives in elec-
tronic products (Lu et al., 2017). In addition, RBDPP and BPA-BDPP are
used as alternatives for BDE-209 in electronic consumer products, and
TPhP is often added to RBDPP and BPA-BDPP products (Brandsma
et al., 2013). The concentration analysis in this study showed that e-
waste dismantling produced a large quantity of tri-OPEs and di-OPEs.
Therefore, PC1might represent the source frome-waste dismantling ac-
tivities. The second principal component (PC2) accounted for 8.3% of
total variance and there was a larger load on di-OPEs than tri-OPEs.
This was because di-OPEs could originate not only from tri-OPEs degra-
dation, but also directly from commercial application. For example,
DPhP is a chemical additive and industrial catalyst (Mitchell et al.,
2019). Triethyl phosphate (TEP) is used as a plasticizer in
polyvinylchloride, polyester resins, and polyurethane foam (Wei et al.,
2015). Thus, PC2 might be related to local industries, such as recycling
old hardware and electrical appliances, and plastics.

3.4. Spatial and temporal distribution characteristics

To explore the influence of the emission of tri-OPEs and di-OPEs
from e-waste dismantling park on the surrounding area, the geograph-
ical distributions of the logarithmic concentrations of ∑tri-OPEs and
∑di-OPEs were investigated for three consecutive years (Fig. 3). The
pollution in e-waste dismantling park was much more severe than
that in the surrounding area, and the pollutionwas generally significant
in the southern area downwind of e-waste dismantling park, which
might be affected by the wind direction at that time and spread from
the e-waste dismantling park. Our previous report on emission of
VOCs from the same e-waste dismantling park also found that wind
could affect the transport of VOCs (Zhang et al., 2020).

Furthermore, it was found that the trends of the spatial spread of tri-
OPEs and di-OPEs differed from2017 to 2019. In 2017, tri-OPEswere re-
leased in a narrow space but their pollution was relatively severe, par-
ticularly the southern area of the e-waste dismantling park.
Comparatively, a wider geographical rangewas observed in 2018. In ad-
dition, although the levels in 2018 were lower than those in 2017, the
pollution of tri-OPEs in the residential area in the northern part of e-
waste dismantling park was also seriously polluted. This could be as-
cribed to the plastic recycling activity without permission, since some



Fig. 2. Concentration associations of tri-OPEs with their respective di-OPEs in the atmospheric samples. (a) TPhP-DPhP; (b) TBP-DBP; (c) TCIPP-BCIPP; (d) TCEP-BCEP (P< 0.05 indicates
significant associations).
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tri-OPEs are also used as plasticizers (Wei et al., 2015). The impact range
of pollution in 2019 was similar to that in 2017, but the levels of pollu-
tion were reduced. Unlike tri-OPEs, the pollution degree and pollution
Fig. 3. Spatial and temporal distribution of tri-OPEs ((a) 2017-tri-OPEs; (b) 2018-tri-OPEs (c) 2
used was the logarithm of the total concentrations (Log10).
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range of di-OPEs in 2018 and 2019 were far lower than those in 2017
(Fig. 3). In general, the contamination of tri-OPEs, as well as di-OPEs
around the e-waste dismantling park, reduced year by year.
019-tri-OPEs) and di-OPEs ((d) 2017-di-OPEs; (e) 2018-di-OPEs; (f) 2019-di-OPEs). Data
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To better understand the spatial and temporal distribution charac-
teristics of tri-OPEs, the spatial distribution of the main tri-OPEs com-
pounds, TPhP and Cl-tri-OPEs, was further studied (Fig. S6). TPhP
pollution in e-waste dismantling park was the most severe, followed
by the southern area downwind of the e-waste dismantling park,
which was consistent with the pollution characteristics of ∑tri-OPEs.
Different from TPhP, alkyl-tri-OPEs and Cl-tri-OPEs had lower pollution
concentrations and had a more ubiquitous distribution (Fig. S6). It
might be mainly because alkyl-tri-OPEs and Cl-tri-OPEs originated not
only from e-waste dismantling but also from other non-e-waste
sources. To further clarify the pollution characteristics of di-OPEs, spatial
distributions of specific isomers were also analyzed, including DPhP,
BCIPP, DBP, and BDCIPP (Fig. S7). It was found that the geographical dis-
tribution of DPhPwas similar to that of TPhP, the result further indicated
that DPhPmainly originated from TPhP degradation or the impurities of
TPhP products.

Although the concentrations varied, the compositions were similar
for different sampling years. Similarly, no significant difference existed
in the composition of homologs between surrounding area and e-
waste dismantling park (Fig. 4). Different from this study, previous
studies found that TCIPP was the dominant compound in the outdoor
air of urban region, followed by TPhP (Wang et al., 2018), while
∑TCPP (tris-(2-chloroisopropyl)-phosphate) was the dominant com-
pound in the urban atmosphere of Pakistan (Syed et al., 2020). These re-
sults indicated that the pollutants in the surrounding area mainly
diffused from the e-waste dismantling park. A clear downward trend
in concentration was observed for these chemicals in the surrounding
area, and the total concentrations of both tri-OPEs and di-OPEs in
2019 were 10 times lower than those in 2017. These results indicated
Fig. 4. Composition profiles of tri-OPEs (a) and di-OPEs (b) in the atmosphere samples
from e-waste dismantling area.
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that the amounts of pollutants released into the surrounding areas of
the e-waste dismantling park decreased, since local government has
strengthened the prevention and control of pollution.

3.5. Non-carcinogenic risk assessment via inhalation exposure

According to the characteristics of different ages, we divided into
five different age groups, included infants (0–2 year), the first years of
children (2–6 year), the last years of children (6–11 year), youth
(11–16 year) and adults (16–70 year). Non-carcinogenic risks to differ-
ent age groups via inhalation exposure were evaluated to assess the ad-
verse effects of tri-OPEs on local residents. As the ADD of di-OPEs was
much lower than that of tri-OPEs and the recommended RfD of di-
OPEs is unknown, the health risks of di-OPEs are not discussed here.
In this study, it was assumed that in the worst case, all particle-bound
and gaseous tri-OPEs were absorbed and utilized, that was, IF was
100%. The hazard index (HI) values of tri-OPEs are shown in Fig. 5,
BW, IR, RfD, etc. would cause differences in HIs for different life-stages
(Guida et al., 2021). The HI values of all tri-OPEs in e-waste dismantling
park were higher than the surrounding area, indicating that people in
the e-waste dismantling park had higher exposure risk than those in
the surrounding area. HI values of both areas were below the safe
thresholds (HI = 1), indicating that there was no potential non-
carcinogenic risk of these chemicals to human health. In the e-waste
dismantling park, the non-carcinogenic risk of tri-OPEs was the highest
in 2017, decreased in 2018, and then increased again in 2019. However,
the non-carcinogenic risk of tri-OPEs decreased year by year in the sur-
rounding area. The non-carcinogenic risk decreased with age in both e-
waste dismantling park and surrounding area, which was mainly re-
lated to inhalation rate and body weight.

Since tri-OPEs are mainly composed of Cl-tri-OPEs and TPhP, the
non-carcinogenic risks of TCPP, TCIPP, TDCP and TPhP were further an-
alyzed (Fig. S8). The non-carcinogenic risk of TPhP was the highest,
followed by TCPP and TCIPP, while TDCIPP had the lowest risk. The
non-carcinogenic risks of TCPP, TCIPP, TDCP and TPhP in e-waste dis-
mantling parkwere the highest in 2017, decreased in 2018, and then in-
creased in 2019. In the surrounding area, the non-carcinogenic risks of
TCPP and TCIPP were equivalent in 2017 and 2018, and decreased in
2019, while the non-carcinogenic risks of TDCIPP and TPhP decreased
year by year. These results might be mainly related to their concentra-
tions in the atmosphere and their RfD.

From the above results, it is evident that more attention should be
given to the non-carcinogenic risk of TPhP, TCPP and TCIPP to the
Fig. 5. Non-carcinogenic risk of inhalation exposure to tri-OPEs with consecutive three
years (Including five age groups of people: 0–2 years old; 2–6 years old; 6–11 years old;
11–16 years old; 11–70 years old).
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lower age groups (0–16 years old). Although there was no non-
carcinogenic risk of these chemicals via inhalation exposure in this
study, considering their potential toxicity, more studies are still needed
to accurately assess their health risk. For example, the risk contribution
via dermal contact, inhalation, and ingestion together can be studied in
the future.

4. Conclusions

Pollution profiles of thirteen tri-OPEs and seven di-OPEs were ana-
lyzed in air of an e-waste dismantling park and surrounding area in
South China. The target analytes were widely detected, the concentra-
tions of tri-OPEs were higher than those of di-OPEs, and the pollution
in e-waste dismantling park was more serious compared to the sur-
rounding area. Tri-OPEs and di-OPEs were primarily affected by e-
waste recycling, while di-OPEs were more affected by other factors
than tri-OPEs, which should be studied further. TPhP and DPhP were
the predominant congeners of tri-OPEs and di-OPEs, and TPhP could
be used as an indicator of the e-waste dismantling activity. Finally, al-
though the non-carcinogenic risk of these chemicals via inhalation ex-
posure to human health was acceptable in this study, human exposure
risk should also be given more attention in the future.
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