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A B S T R A C T   

Fetal exposure to multiple organic contaminants (OCs) is a public concern because of the adverse effects of OCs 
on early life development. Infant hair has the potential to be used as an alternative matrix to identify susceptible 
fetuses, owing to its reliability, sensitivity, and advantages associated with sampling, handling, and ethics. 
However, the applicability of infant hair for assessing in utero exposure to OCs is still limited. In this study, 57 
infant hair samples were collected in Guangzhou, South China, to evaluate the levels and compositions of typical 
OCs in the fetus. Most of the target OCs were detected in infant hair, with medians of 144 μg/g, 17.7 μg/g, 192 
ng/g, 46.9 ng/g, and 1.36 ng/g for phthalate esters (PAEs), alternative plasticizers (APs), organophosphorus 
flame retardants (OPFRs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs), 
respectively. Meanwhile, paired maternal hair (0–9 cm from the scalp) was collected to examine the associations 
between maternal and infant hair for individual compounds. Low-brominated PBDEs tended to deposit in infant 
hair, with median concentrations approximately two times higher than those in maternal samples. Levels of 
PBDEs and 4,4′-dichlorodiphenyldichloroethylene (p,p’-DDE) in paired maternal and infant hair showed strong 
positive correlations (p < 0.05), while most plasticizers (PAEs and APs) were poorly correlated between paired 
hair samples. Exposure sources were responsible for the variation in correlation between OC levels in the paired 
infant and maternal samples. Crude relationships between fetal exposure to OCs and birth size were examined 
using the Bayesian kernel machine regression (BKMR) model. BDE-28 was found to be adversely associated with 
the birth size. This study provides referential information for evaluating in utero exposure to OCs and their health 
risks based on infant hair.   

Abbreviations: APs, alternative plasticizer; BKMR, Bayesian Kernel Machine Regression; β-HCH, β-hexachlorocyclohexane; BLZ, birth length Z score; BMI, body 
mass index; BWZ, birth weight Z score; DDT, dichlorodiphenyltrichloroethane; DEHP, bis(2-ethylhexyl)phthalate; DEHT, bis-(2-ethylhexyl) terephthalate; DMP, 
dimethyl phthalate; DOP, di-n-octyl phthalate; EHDPP, 2-ethylhexyl diphenyl phosphate; HCZ, head circumference Z score; IQR, interquartile range; LOD, limit of 
detection; LOQ, limit of quantification; OC, organic contaminant; OCP, organochlorine pesticide; OPFR, organophosphorus flame retardant; PAE, phthalate ester; 
PBDE, polybrominated diphenyl ether; PFAS, poly- and perfluoroalkyl substances; PIP, posterior inclusion probabilitie; SI, supporting information; TDCIPP, tris(1,3- 
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Main finding of the work 

Using hair as a biomonitoring matrix to reveal fetal exposure to OCs, 
we found higher deposition of lower-brominated PBDEs in infant hair 
than that in maternal hair, and raise concerns over fetal exposure to 
BDE-28. 

1. Introduction 

Pregnant women and fetuses are highly sensitive and vulnerable to 
organic contaminants (OCs) as the fetal immune and metabolic systems 
are still in development (Barker, 2007). Although the use of legacy OCs, 
such as polybrominated diphenyl ethers (PBDEs) and organochlorine 
pesticides (OCPs), has been banned or restricted for years, environ
mental exposure to these chemicals will continue owing to their his
torically extensive applications. Previous studies have reported the 
extensive detection of PBDEs and OCPs in maternal and infant tissue 
samples and their health risks, including deficiencies in the fetal and 
early postnatal life periods (Yin et al., 2019; Fernandez-Cruz et al., 2020; 
Matovu et al., 2020). Plasticizers, including phthalate esters (PAEs) and 
their alternatives (i.e., alternative plasticizers, APs) and organophos
phorus flame retardants (OPFRs), are widely used in various products as 
chemical additives and have high detection frequencies in the indoor 
environments of ordinary residents (Salthammer, 2020; Tang et al., 
2020). Epidemiological studies have indicated that maternal exposure to 
PAEs and OPFRs may have adverse effects on fetal development and 
birth outcomes (Day et al., 2021; Yao et al., 2021). Owing to the ubiq
uitous presence of OCs in the environment, an increasing number of 
studies have focused on exposure biomonitoring and their potential 
adverse effects on embryonic development and growth (Jin et al., 2020; 
Kuiper et al., 2020; Luo et al., 2021; Ouidir et al., 2020; Wang et al., 
2022; Yao et al., 2021). 

Most epidemiological studies have used maternal urine to assess 
prenatal exposure to plasticizers and OPFRs owing to their relatively 
rapid elimination in human body (Marie et al., 2015; Vorkamp et al., 
2020). Meanwhile, maternal blood, placenta, and cord blood are 
commonly used to assess prenatal exposure to PBDEs and OCPs (Yin 
et al., 2019; Matovu et al., 2020). However, intrauterine exposure to 
certain OCs, such as endocrine disruptors, generally results in long-term 
cumulative effects with respect to health. OC levels in maternal urine or 
blood samples can provide information solely regarding recent and 
acute exposure to OCs. Several studies have revealed that variation in 
the sampling time of maternal urine (Kuiper et al., 2020; Luo et al., 
2021) or blood (Eryasa et al., 2019) significantly affects the compara
bility of the examining levels of OCs in these matrices. Besides, the cord 
blood and placenta may have limited applications in biomonitoring 
owing to the poor deposition of toxicants (Fernandez-Cruz et al., 2020). 
Therefore, it is essential to employ a biomonitoring matrix that provides 
a relatively stable long-term window of exposure, which benefits the 
assessment of dose-effect associations. 

Hair samples are preferred as they provide a longer detection win
dow for multiple chemicals (Appenzeller and Tsatsakis, 2012) and have 
advantages with respect to sampling, pretreatment, and ethical issues. 
Fetal follicles begin to grow at approximately eight weeks of gestation, 
and the hair shaft forms at approximately 24–28 weeks of gestation 
(Furdon and Clark, 2003). Thus, infant hair is a comprehensive terminal 
biological sample that can be used to directly assess fetal exposure to 
OCs in relation to the fetal compartment, thereby ensuring reliability 
and sensitivity (Wabuyele et al., 2018). Recently, infant hair has been 
used for biomonitoring prenatal exposure to drugs and environmental 
toxic metals, including mercury, lead, manganese, and arsenic, in utero 
(Bose-O’Reilly et al., 2020; Gareri and Koren, 2010; Pan et al., 2021; 
Örün, Yalçın and O. Aykut. 2021; Irizar et al., 2019; Rodrigues et al., 
2015). However, limited data are available regarding the assessment of 
fetal exposure to OCs using infant hair. Further studies are needed to 
elucidate the feasibility of using infant hair as a biomonitoring matrix 

for in utero exposure to OC mixtures. 
In the present study, infant hair samples were collected from healthy 

infants in Guangzhou City, South China to provide insights into in utero 
exposure to OC mixtures. Paired maternal hair samples (0–9 cm) were 
also collected to investigate the differences and correlations between the 
maternal and fetal body burdens of OCs, and the associated influencing 
factors were explored. Furthermore, the crude relationship between hair 
OC levels and fetal birth size was conservatively estimated. The major 
objective of this study was to propose infant hair as an alternative bio
monitoring matrix to detect fetal OC exposure. 

2. Materials and methods 

2.1. Chemicals 

The target analytes consisted of eight PBDE congeners, eight PAEs, 
eight APs, fifteen OPFRs, and ten OCPs. Detailed information regarding 
these analytes is provided in Table S1 of the Supporting Information (SI). 

2.2. Study population 

A total of 57 pairs of maternal and infant hair samples were collected 
1–2 days after delivery in Guangzhou, Guangdong Province, South 
China, from January to March 2020. Non-dyed hair in the occipital area 
was excised close to the scalp. Hair samples were wrapped in aluminum 
foil and stored at − 20 ◦C. Informed consent was obtained from all the 
participants at recruitment. This study was approved by the Ethics 
Committees of the Sixth Affiliated Hospital of Sun Yat-sen University. 
The demographic characteristics of the mothers and their infants are 
presented in Table 1. 

2.3. Sample pretreatment and instrumental analysis 

According to the average rate of hair growth of 1 cm per month 
(Pragst et al., 2006), maternal hair (0–9 cm) from the scalp represents 
approximately nine months of exposure, covering the entire period of 

Table 1 
Characteristics of the study population.  

Characteristics Mean ±
SD 

25th 50th 75th % 

Pregnant women (n = 57) 

Age (years) 29.8 ±
3.87 

27 30 32  

Pre-pregnancy body mass index 
(kg/m2) 

20.9 ±
2.64 

19.4 20.8 22.3  

Pregnancy weight gain (kg) 13.5 ±
3.59 

11.5 13.0 15.3  

Gestationalage (days) 269 ±
12.0 

263 272 277  

Parity      
1 30    52.7 
>1 27    47.3 
Smoking during pregnancy      
Never 55    96.5 
Ever 2    3.5 
Alcohol during pregnancy      
Never 52    91.2 
Ever 5    8.8 
Infants (n ¼ 57) 
Sex      
Male 33    57.9 
Female 24    42.1 
Birth weight (kg) 3.02 ±

0.44 
2.82 3.08 3.32  

Birth length (cm) 49.2 ±
2.26 

48 49 51  

Head circumference (cm) 32.6 ±
1.14 

32 33 33   
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pregnancy. Prior to analysis, the hair samples were rinsed twice with 
warm Milli-Q water to remove external contaminants (e.g., soil parti
cles, and dust), as reported in our previous study (Zheng et al., 2013). 
The pretreatment method for determining the target analytes in 
maternal and infant hair samples was based on the methodology 
described in our previous study (Tang et al., 2022), with minor modi
fications, and is described in detail in the SI. Detailed information on the 
instrumental analysis parameters is provided in the SI. 

2.4. Quality assurance and control 

The analytical protocol for OCs in hair was validated by analyses of 
spiked native standards in the matrix (a homogeneous hair sample) at 
low (10 ng of each chemical) and high (100 ng of each chemical) levels. 
The recoveries were 73–103% for PBDEs, 69–118% for OPFRs, 75–111% 
for PAEs, 63–97% for APs, and 87–105% for OCPs for the low-spiked 
group (n = 3), and 74–120% for PBDEs, 69–114% for OPFRs, 
63–121% for PAEs, 63–125% for APs, and 88–103% for OCPs for the 
high-spiked matrices (n = 3). Instrumental quality control was per
formed by the regular injection of solvent blanks and mixture of stan
dard solutions. Standard solutions were injected after every 12 hair 
samples, with inter- and intra-daily relative standard deviations less 
than 15%, to ensure consistency in the analysis of target chemicals. The 
recoveries of internal standards were in the range of 75 ± 16% to 102 ±
15% in infant hair samples and 82 ± 12% to 97 ± 19% in maternal hair 
samples. Detailed information on the recovery of each compound is 
provided in the SI. 

Procedural blank samples were analyzed in parallel with each batch 
of hair samples to adjust for potential background contamination by the 
target chemicals. The mean OC levels measured in procedural blanks 
were subtracted from the sample results. The limits of quantification 
(LOQs) were estimated as the average levels of target analytes in the 
procedural blanks plus three times the standard deviation (Tang et al., 
2021; Zheng et al., 2015). For chemicals not detected in the procedural 
blanks, the LOQs were calculated as signal-to-noise ratios of 10. The 
LOQs for PBDEs, PAEs, APs, OPFRs, and OCPs in hair were in the range 
of 0.06–0.98, 2.44–758, 6.15–340, 0.04–112, and 0.01–0.21 ng/g, 
respectively (Table S1). 

2.5. Statistical analysis 

Hair OC concentrations below the LOD were imputed using LOD/2 
for statistical analysis. OCs detected in <50% of samples were not 
included in the statistical analysis. All OC concentrations were log- 
transformed to satisfy the requirements for normally distributed re
siduals. The newborn size calculator from the INTERGROWTH-21st 
Project was used to calculate the Z scores for gestational age using the 
following parameters: birth weight Z score (BWZ), birth length Z score 
(BLZ), and head circumference Z score (HCZ). The correlations among 
log-transformed OC levels were estimated by calculating the partial 
(two-tailed) correlation coefficients (r), adjusted for maternal age 
(years, continuous), pre-pregnancy body mass index (BMI) (kg/m2, 
continuous), parity (continuous), pregnancy weight gain (kg, contin
uous), gestational age (days, continuous), and infant sex (male or fe
male). A two-tailed significant p-value was set at 0.05. Considering the 
possible non-additive and nonlinear associations between OC mixtures 
and birth size, Bayesian kernel machine regression (BKMR) (Bobb et al., 
2015) was implemented to examine the overall association between OC 
mixture exposure and each of the three birth size Z scores (BWZ, BLZ, 
and HCZ), and the relative importance of each OC. A series of sensitivity 
analyses was also performed to investigate the robustness of the primary 
mixture model. Detailed information for the statistical analysis using the 
mixture model is provided in the SI. A power analysis was performed to 
estimate the statistical analysis power of this study, and the results 
indicated that the sample size met the relevant statistical requirements. 
A recommended value of effect size of 0.35 was selected according to 

Cohen’s criteria for a large effect size in the linear model (Cohen, 1988). 
All statistical analyses were performed using the R software version 
4.1.0. BKMR models were implemented with the “bkmr” (version 0.2.2) 
R packages. Power analysis was implemented with the “pwr” (version 
1.3–0) R packages. 

3. Results and discussion 

3.1. OCs in infant and maternal hair 

The detection frequency and concentrations of OCs analyzed in 57 
infant hair samples are listed in Table S2 and shown in Fig. 1. 

The interquartile range (IQR) of 
∑

PAEs in infant hair was 58.0–292 
μg/g (median: 144 μg/g), of which bis(2-ethylhexyl) phthalate (DEHP) 
showed the highest concentrations, with a median of 49.1 μg/g. The IQR 
of 

∑
APs in infant hair ranged from 10.5 to 73.6 μg/g (median: 17.7 μg/ 

g), and bis-(2-ethylhexyl) terephthalate (DEHT) was the predominant 
AP with a median of 10.2 μg/g. The IQR of 

∑
OPFRs in infant hair was 

45.3–396 ng/g (median: 192 ng/g); 2-ethylhexyl diphenyl phosphate 
(EHDPP) dominated OPFRs in infant hair with a median of 29.8 ng/g. 
Few studies have reported plasticizers and OPFR levels in maternal and 
infant tissues because most of these chemicals are readily metabolized in 
vivo and excreted via urine (Huang et al., 2021; Luo et al., 2020; Luo 
et al., 2021). However, the residuals of these two types of chemicals can 
still be detected in human serum or blood (Huang et al., 2014; Koch 
et al., 2005; Wang et al., 2021; Zhang et al., 2009; Zhao et al., 2017) and 
can be transported through the human placenta with high transplacental 
efficiencies (Li et al., 2018; Wang et al., 2021; Zhao et al., 2017). 
Considering the frequent detection of PAEs, APs, and OPFRs in infant 
hair in the present study, it can be inferred that infant hair can capture 

Fig. 1. Concentrations of OCs detected with DFs >70% in the infant hair 
samples. The upper and lower bounds of the boxes indicate the 75th and 25th 
percentiles, respectively; the horizontal lines within the boxes indicate median 
values; the upper and lower limits of the whiskers indicate the 95th and 5th 
percentiles, respectively. Abbreviations: AP, alternative plasticizers; BDE-28, 
2,4,4′-tribromodiphenyl ether; BDE-47, 2,2′,4,4′-tetrabromodiphenyl ether; 
BDE-100, 2,2′,4,4′,6-pentabromodiphenyl ether; DBP, di-n-butyl phthalate; 
DEP, diethyl phthalate; DEHA, bis-(2-ethylhexyl) adipate; DEHP, bis(2- 
ethylhexyl)phthalate; DEHT, bis-(2-ethylhexyl) terephthalate; DIBP, di-iso- 
butyl phthalate; DIDP, di-iso decyl phthalate; DINCH, 1,2-cyclohexane dicar
boxylic acid diisononyl ester; DINP, di-iso nonyl phthalate; DMP, dimethyl 
phthalate; DNP, dinonyl phthalate; DOP, di-n-octyl phthalate; DPHP, di-(2- 
propyl heptyl) phthalate; EHDPP, 2-ethylhexyl diphenyl phosphate; OC, 
organic contaminants; OCP, organochlorine pesticide; OPFR, organophos
phorus flame retardant; PAE, phthalate ester; PBDE, polybrominated diphenyl 
ether; p,p’-DDE, 4,4′-dichlorodiphenyldichloroethylene; TCIPP, tris(2- 
chloropropyl) phosphate; TIPRP, triisopropyl phosphate; TOTM, tris (2-ethyl
hexyl) trimetallite; TPHP, triphenyl phosphate. 
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sporadic exposure to these chemicals with a short half-life. Moreover, 
continuous exposure to high levels of these chemicals in indoor envi
ronments is conducive to their accumulation in utero and deposition in 
infant hair. DEHT was also the predominant chemical among indoor 
dust samples from mothers’ homes during pregnancy (Hou et al., 2022). 
Although PAEs still dominate the plasticizer market, increasing AP 
levels have been observed in indoor dust samples from ordinary resi
dents in Guangzhou (Tang et al., 2020), and their potential environ
mental pollution and health effects cannot be ignored. 

The IQR of 
∑

PBDE in infant hair ranged between 17.4 and 90.6 ng/g 
(median: 46.9 ng/g). To date, only one study has investigated PBDE 
levels (0.038–1.01 ng/g) in infant hair (n = 12), which were much lower 
than those in the present study (Aleksa et al., 2012). Moreover, BDE-153 
dominated PBDE congeners in infant hair in that study (Aleksa et al., 
2012), which was different from the results observed in the present 
study, with BDE-47 as the major PBDE congener. BDE-47 and -153 have 
been detected as the dominant congeners in fetal blood collected from 
Guangzhou in 2006 (Bi et al., 2006). However, several recent studies 
reported that BDE-47 was the predominant PBDE congener in the 
meconium (Fernandez-Cruz et al., 2020; Katsikantami et al., 2016) and 
neonatal urine (Chen et al., 2014), which was consistent with the PBDE 
compositions found in infant hair in the present study. The difference in 
the major PBDE found between the present study and the previous study 
implies a shift in maternal exposure routes to PBDEs. BDE-47 is a major 
metabolite of BDE-209 in aquatic organisms (e.g., fish) (Roberts et al., 
2011) and was found to be the dominant congener in foods with high 
lipid/fat content (such as fish, chicken, and eggs) (Cai et al., 2018; Hao 
et al., 2014; Meng et al., 2008), which may be a crucial exposure source 
for pregnant women and their fetuses. BDE-153 showed the longest 
residence among PBDE congeners in the human body, with an estimated 
half-life of 12 years, whereas BDE-47 has a shorter half-life of 3 years 
(Geyer et al., 2004). Therefore, it can be hypothesized that the dominant 
BDE-153 in fetal hair (Aleksa et al., 2012) and blood collected decades 
ago (Bi et al., 2006) was mainly derived from maternal in vivo 
biotransformation of high-brominated PBDEs through external exposure 
pathways. In the present study, BDE-47 was the dominant congener in 
the infant hair, probably because of the maternal consumption of 
aquatic foods with high levels of BDE-47 (i.e., fish). 

The IQR of 
∑

OCPs in infant hair was 0.80–2.64 ng/g (median: 1.36 
ng/g), of which 4,4′-dichlorodiphenyldichloroethylene (p, p’-DDE) 
showed the highest concentrations, with a median of 1.00 ng/g. Ac
cording to previous studies, p,p′-DDE and β-hexachlorocyclohexane 
(β-HCH) are the most abundant OCPs worldwide (Gaspar et al., 2017), 
and both have been widely detected in cord blood (Choi et al., 2018; 
Wang et al., 2022) and meconium (Fernandez-Cruz et al., 2020; Jeong 
et al., 2016), which is consistent with the detection of these two OCPs in 
infant hair in the present study. The widespread occurrence of these 
legacy OCs in infant hair indicates their continuous exposure to humans 
and the need for constant attention to their health effects on early-life 
development. 

The IQRs of 
∑

PAEs, 
∑

APs, 
∑

OPFRs, 
∑

PBDEs, and 
∑

OCPs in 
maternal hair were 37.7–78.9 μg/g (median: 59.5 μg/g), 6.25–23.5 μg/g 
(median: 11.4 μg/g), 155–1170 ng/g (median: 455 ng/g), 1.25–5.25 ng/ 
g (median: 2.26 ng/g), and 2.63–11.3 ng/g (median: 6.26 ng/g), 
respectively (Table S2). Similar to the OC compositions in infant hair, 
DEHP, DEHT, and p, p’-DDE were the most abundant chemicals for 
PAEs, APs, and OCPs in maternal hair, respectively. Tris(1,3-dichloro-2- 
propyl) phosphate (TDCIPP) was the dominant OPFR in maternal hair, 
and BDE-209 (accounting for 44% of the total PBDE) was the dominant 
PBDE congener in maternal hair, followed by BDE-47 (25%) and − 28 
(23%), which were different from those in infant hair. 

3.2. Differences and correlations between maternal and infant hair OCs 

The prevalence of target OCs measured in infant hair samples in this 
study confirmed that these OCs can lead to fetal exposure and 

accumulation in the intrauterine environment through maternal-fetal 
transmission. Paired maternal hair (0–9 cm) was collected to examine 
the association between maternal and infant hairs for compounds 
(Table S2). Previous studies have compared maternal and infant hair at 
the chemical level to investigate fetal accumulation and found that the 
levels of cortisol and cortisone were all markedly higher in infant hair 
compared with those in the maternal hair (Hollanders et al., 2017; 
(Stoye et al., 2021)). However, there are still limited details regarding 
the quantity of infant and maternal hair, which are needed to better 
interpret the comparisons. For example, infant hair is thinner and more 
porous than that of adults (Wang and Drummer, 2015). Additionally, we 
counted the numbers of hair strands in 0.01 g infant hair (approximately 
2 cm) and maternal hair (0–9 cm), and found them to be 511 ± 58 and 
39 ± 10, respectively, which indicated that there are over 10 times as 
many infant hairs as maternal hairs of the same weight. Thus, the dif
ference in density between infant and maternal hair may lead to ambi
guity in OC levels based on hair weight (i.e., ng/g). 

Given that all hair follicles are formed prenatally and new ones are 
no longer produced postnatally, maternal and infant hair have the same 
hair follicle initiation and structural development (Gareri and Koren, 
2010). Based on this, we assumed that exposure to compounds during 
pregnancy can be reflected by the total amount of compounds in all hair 
grown during pregnancy, corresponding to the 0–9 cm portion of 
maternal hair and the whole strand of infant hair. Thus, the OC levels 
were converted to pg per hair strand (pg/h, Table S3) to explore the 
deposition of OCs in infant hair relative to maternal hair. Higher 
deposition of BDE-28 and -47 was found in infant hair, with median 
concentrations (pg/h) approximately double higher than those in paired 
maternal hair (Table S3). Correlation analysis results also suggested 
chemical-dependent in utero exposure and accumulation, with only five 
chemicals, BDE-47 (r = 0.363, p = 0.009), p,p’-DDE (r = 0.397, p =
0.004), DEHP (r = 0.559, p < 0.001), di-n-octyl phthalate (DOP) (r =
0.334, p = 0.017), and dimethyl phthalate (DMP) (r = 0.303, p = 0.031) 
exhibiting positive correlations between maternal and infant hair 
(Table S4). 

Different exposure sources for maternal and infant hair can be pro
posed to explain the variation in distribution and general lack of cor
relation for OCs between maternal and infant hair. Although hair was 
rinsed twice with Milli-Q water to remove dirt (e.g., dander, grease, 
dust, etc.) from the hair surface, OCs from exogenous sources (e.g., air 
and dust) can be incorporated into the growing hair shaft (Qiao et al., 
2019). For example, BDE-209 was detected in ≥75% of maternal hair 
samples; however, it was rarely detected in infant hair samples. In dust 
samples collected from mothers’ homes during pregnancy, only 
BDE-209 was detected at concentrations at μg/g levels (Hou et al., 
2022). BDE-209 in maternal hair may originate from external contam
ination, including dust. Thus, maternal hair OCs indicate the integration 
of internal body burden (maternal blood) and external contamination (e. 
g., air and dust), which could only reflect prenatal exposure to the parent 
and the environment. In contrast, infant hair OCs are assumed to be 
endogenously derived during pregnancy from three main sources: 1) 
fetal circulation, which brings both maternally and fetally unmetabo
lized OCs to the germinal cells of the hair follicle, 2) steady exchange 
with amniotic fluid, 3) and fetal metabolism. 

Low-brominated PBDEs and DDTs in maternal hair are considered to 
be deposited through food intake (Wu et al., 2020) and less affected by 
external sources because of the low detection frequencies in environ
mental samples (Hou et al., 2022). Therefore, these lipophilic OC levels 
in infant hair are overall influenced by their levels in the mother. A 
possible cause for the high levels of low-brominated PBDEs in infant hair 
is that lower-brominated PBDEs (i.e., BDE-28, -99, and − 47) are more 
likely to pass through the placenta into infants than higher-brominated 
congeners (i.e., BDE-153 and -209) (Chen et al., 2014; Frederiksen et al., 
2010; Zhao et al., 2013). Consistently, low-brominated congeners, 
including BDE-28, -47, and − 100, were detected at higher frequencies 
and levels than those of high-brominated congeners in infant hair. 
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Correlation analysis of PBDEs and DDTs between maternal and infant 
hair was performed to further evaluate their accumulation in infant hair. 
Positive correlations were found among BDE-28, -47, and − 100 in infant 
hair (r = 0.692–0.986, p < 0.001, Table 2), implying potentially similar 
exposure sources and toxicokinetics. Moreover, BDE-28 and -47 in infant 
hair were positively correlated with BDE-47 and 209 in maternal hair (r 
= 0.363–0.421, p < 0.05, Table 2). These results imply that continuous 
maternal exposure to PBDEs during pregnancy is an important source of 
low-brominated PBDEs in infant hair. For DDTs, we found positive 
correlations for p,p’-DDE between paired infant and maternal hair (r =
0.397, p = 0.004) but no correlation between p,p’-DDE in infant hair and 
p,p’-DDT in maternal hair (Table 3). These results suggest that p,p’-DDE 
in infant hair originates from the predominated maternal-fetal trans
mission of p,p’-DDE rather than the maternal metabolism of p,p’-DDT. 

Between developmental weeks 24–28, fetal follicles enter the cata
gen phase, followed by telogen stages, and then shed to undergo their 
second life cycle (Gareri and Koren, 2010). Consequently, infant hair OC 
levels in full-term neonates are thought to provide an index of OC 
exposure from week 28 of pregnancy to birth (roughly in the last 
trimester). However, the observed positive correlations of PBDEs and 
DDTs between maternal and infant hair may support the hypothesis that 
the detection window reflected by the infant hair sample potentially 
encompasses a longer period of pregnancy, since 9-cm of maternal hair 
is considered to cover the entire period of pregnancy. Previous studies 
have reported that contaminants can pass through the placenta and 
cause fetal exposure during early pregnancy (Zhao et al., 2017; Li et al., 
2018). During early pregnancy, the limited elimination capacity of OCs 
in the fetus may be conducive to the accumulation of OCs in the fetus 
and fewer barriers to the diffusion of OCs from fetal blood to the 
germinal cells (Foster et al., 2011; Zhao et al., 2017). Moreover, constant 
exposure to amniotic fluid helps and promotes the diffusion of sub
stances into the infant hair matrix (Ramírez Fernández et al., 2022). 
Therefore, infant hair may retain contaminants in fetal circulation and 
amniotic fluid during the intact pregnancy exposure period. Data from 
additional biomonitoring studies and evidence from in vitro and in vivo 
investigations are required to better elucidate the detection window of 
infant hair. 

In general, infant hair can provide long-term exposure information 
for low-brominated PBDEs and p,p’-DDE, which is positively associated 
with maternal hair. Given the limited data on paired maternal and infant 
hair thus far, the knowledge gaps regarding hair quantity required for 
comparison, and the recognition of factors that influence the deposition 
of OCs in infant hair, it is essential to examine whether maternal and 
infant hair can be used interchangeably to evaluate long-term OC 
exposure in newborns. Our findings regarding the occurrence, distri
bution, and accumulation trends of OCs in paired maternal and infant 

hair represent an initial step in understanding these complex relation
ships. The higher deposition of low-brominated PBDEs (i.e., BDE-28, 
-47, and − 100) in infant hair than maternal hair indicates that the 
fetus experienced a high level of exposure, a fact that requires further 
attention. 

3.3. Crude relationships between fetal exposure to OCs and birth size 

Although BWZ, BLZ, and HCZ are not specific for fetal dysfunction or 
disease, these parameters have been promoted as early markers of al
terations in fetal development (Luo et al., 2021; Wang et al., 2022). We 
examined the relationship between OC levels in infant hair and birth size 
parameters to assess the possible joint effects of OC exposure on fetal 
development. The results of the BKMR model showed no significant 
cumulative associations between overall OC mixtures and birth size 
Z-scores (Fig. S3). BDE-28 in infant hair exhibited a major negative ef
fect on birth size Z-scores when other OCs were set at the 25th, 50th, and 
75th percentiles (Fig. S4). The posterior inclusion probabilities (PIPs) 
ranked BDE-28 (conditional-PIP: 0.554) in infant hair the highest with 
respect to the inverse association with HCZ (Table S4). These results are 
robust to sensitivity analyses (detailed descriptions are provided in the 
SI). 

In the present study, high concentrations of BDE-28 in infant hair 
were associated with lower birth sizes. This result agrees with that of 
most epidemiological studies in humans that revealed that higher PBDE 
levels in the plasma (Ouidir et al., 2020), serum (Eick et al., 2020), 
colostrum (Jin et al., 2020), and dried blood spots (Bell et al., 2019) are 
generally associated with low birth sizes. Consistent correlations were 
obtained in different studies using a variety of biomonitoring matrices, 
probably because of the long half-life of low-brominated PBDEs in 
available biological matrices. Human Early-Life Exposome is a particu
larly important period for studying the causes of disease (Vrijheid et al., 
2021), and hair analysis can retrospectively reflect the exposure char
acteristics and potential health effects of OCs in the corresponding time 
period (Qiao et al., 2019), which provides a solution to the uncertainty 
of exposure biomonitoring. 

Since the time of PBDEs restriction in the electronics industry in 
China, the concentrations of certain PBDEs in environmental and human 
samples have declined (Tang et al., 2022). While the levels may have 
dropped, PBDEs remain ubiquitously present in pregnant women and 
might affect fetal development, as fetuses are sensitive to even very low 
doses of xenobiotics (Fernandez-Cruz et al., 2020; Matovu et al., 2020). 
However, it should be noted that this study was a preliminary explora
tion of the crude relationship between hair OC levels and birth sizes, 
owing to the relatively small sample size. 

It should be noted that the present study had several limitations. 
First, owing to missing data, adjustment for dietary intake for exposure 
to OCs was not available. Aquatic products are major exposure sources 

Table 2 
Partial correlation of log-transformed PBDE concentrations between paired in
fant and maternal hair.    

BDE-28 
a 

BDE-47 
a 

BDE- 
100 a 

BDE-28 
b 

BDE-47 
b 

BDE- 
209 b 

BDE-28 
a 

r 1.000   .107 378** .421** 
p    .455 .006 .002 

BDE-47 
a 

r .986** 1.000  .068 .363** .395** 
p <.001   .636 .009 .004 

BDE- 
100 a 

r .704** .692** 1.000 − .055 .183 .388** 
p <.001 <.001  .702 .200 .005 

Partial correlation was adjusted for maternal age, pre-pregnancy body mass 
index, parity, pregnancy weight gain, gestational age and infant gender. Ab
breviations: BDE-28, 2,4,4′-tribromodiphenyl ether; BDE-47, 2,2′,4,4′-tetra
bromodiphenyl ether; BDE-100, 2,2′,4,4′,6-Pentabromodiphenyl ether; BDE- 
209, decabromodiphenyl ether; PBDE, polybrominated diphenyl ether. 
**Correlation is significant at the 0.01 level (2-tailed). 

a Infant hair. 
b Maternal hair (0–9 cm). 

Table 3 
Partial correlation of log-transformed DDT concentrations between paired infant 
and maternal hair.   

p,p’-DDE a p,p’-DDE b p,p’-DDT b 

p,p’-DDE a r 1.000    
p .   

p,p’-DDEb r .397** 1.000   
p .004 .  

p,p’-DDTb r .168 .484** 1.000  
p .240 <.001 . 

Partial correlation was adjusted for maternal age, pre-pregnancy body mass 
index, parity, pregnancy weight gain, gestational age and infant gender. Ab
breviations: p,p’-DDE, 4,4′-dichlorodiphenyldichloroethylene; p,p’-DDT, 4,4′- 
dichlorodiphenyltrichloroethane. 
**Correlation is significant at the 0.01 level (2-tailed). 

a Infant hair. 
b Maternal hair (0–9 cm). 
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of BDE-47, as well as nutrients that promote fetal growth; thus, fish and 
seafood consumption by pregnant women would induce bias with 
respect to the association between BDE-47 and birth sizes. Meanwhile, 
these data are useful in the source analysis of BDE-47 in maternal and 
infant hair. Second, we cannot rule out the possibility of flame re
tardants and plasticizers due to the influence of infant hair collection 
devices, although the effect may be negligible if it occurs. Third, there is 
a lack of discussion on critical processes in maternal-fetal transmission 
and their effect on the deposition of OCs in infant hair due to the absence 
of maternal internal exposure data (such as OC levels in the blood and 
amniotic fluid). An additional consideration is that several other groups 
of OCs may also impact fetal growth, such as poly- and perfluoroalkyl 
substances (PFAS), bisphenol A, and pesticides, but were excluded from 
our study because of the low sample volume and lack of separate pre
treatment methods, especially for infant hair. Finally, the sample size 
was modest for the exposure study, but small for the regression analysis. 
The relatively small sample size limits further interpretation of the ef
fects on fetal development and the analysis of the demographic impact 
on OC levels in hair. Larger sample sizes and more accurate analysis 
methods in future studies would allow for a deeper investigation of the 
potential health effects of OCs as revealed by infant hair. 

4. Conclusions 

For the first time, we analyzed fetal exposure to OCs using infant hair 
as the biomonitoring matrix. Infant hair can provide long-term exposure 
information for low-brominated and p,p’-DDE, which is positively 
associated with maternal hair. Low-brominated PBDEs had higher 
deposition in infant hair and were associated with lower birth size. The 
results of the present study indicated that infant hair has advantages 
with respect to providing an index of in-utero exposure to OC mixtures 
and raise concerns over fetal exposure to these chemicals. However, 
more studies encompassing the OC deposition process in infant hair and 
larger sample sizes are needed to further investigate the feasibility of 
using infant hair to evaluate fetal exposure to OCs. 
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